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LE’ITER TO THE EDITOR 

Existence of the ferromagnetic phase in a random-bond 
Ising model on the square lattice 

T Horiguchi and T Morita 
Department of Engineering Science, Faculty of Engineering, Tohoku University, Sendai 
980, Japan 

Received 9 November 1981 

Abtract. We extend Griffiths’ arguments to show that there exists the thermodynamic limit 
in a quenched random-bond king model with competing interactions on the square lattice. 
We extend Peierls’ arguments to give 0.97394 for an upper bound of the critical concen- 
tration of the ferromagnetic phase for the system in which the exchange integrals take on 
J > 0 and -J with respective probabilities p and 1 - p .  

The random-bond Ising model with exchange integrals J > 0 and -J has arrested the 
attention of many authors on the problem of the existence of the spin-glass phase 
defined by Edwards and Anderson (1975). Apart from results obtained by approxi- 
mate calculations, the exact nature of the system is not much clarified (e.g. see 
Nishimori 1980, 1981a, b, Morita and Horiguchi 1980, Horiguchi 1981a, b). The 
disappearance of the long-range order parameter is necessary for the existence of the 
spin-glass phase. The present authors showed that there is no spontaneous long-range 
order in a finite interval of concentration p of the ferromagnetic bonds (Horiguchi and 
Morita 1981, 1982a, b). Recently, Nishimori (1981b) applied Peierls’ arguments 
(Peierls 1936) modified by Griffiths (1964a, 1972) and showed that there is a region on 
the p-T plane in which the ferromagnetic phase surely occurs; T is the temperature. 
However, his results only give a trivial upper bound p = 1 of the critical concentration 
of ferromagnetic bonds for the occurrence of the ferromagnetic phase at T = 0. We 
believe that there should exist a critical concentration pc less than 1. Our aim in the 
present Letter is to find a non-trivial upper bound of the critical concentration of the 
ferromagnetic bonds for the occurrence of the ferromagnetic phase by extending 
Peierls’ and Griffiths’ arguments. 

We consider a random-bond king model on a square lattice A. The total number of 
lattice sites is denoted by IAl. The Hamiltonian of the system is assumed to be given by 

where si is the spin variable for site i and takes on the values f 1 and h is the external 
field. The first summation on the right-hand side is taken over all nearest-neighbour 
pairs of sites. Ai are the exchange integrals which are quenched random variables and 
whose probability distribution is denoted by P(Jij)  and assumed to be independent of 
those of the J k ,  for other bonds (k l ) .  We denote the configurational average of a 
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function O{JI,) of the set {Jl,} by the angular brackets with a subscript c: 

Q { J I I )  n [ P ( J l , )  dJl,l. (Q{JI,)>, = 
(1 , )  

We assume that (IJ,il)c is finite. 
The free energy associated with the Hamiltonian H is defined by 

F ( H )  = -p- '  In e-''' ( 3 )  
( I , )  

where /3 = 1 / kB T as usual. We divide H into two parts, Ho and HI : H = Ho + HI.  Since 
our system is classical, we easily obtain the inequality 

((H1))c 6 ( F ( H ) ) c  - (F(Ho))c ((Hl)O)c. (4) 

Here the angular brackets (6) denote the canonical average of a quantity 0 for the 
system with the Hamiltonian H 

and (6)o for the system with the Hamiltonian Ho. From equation (4) we have 

I(F(H)), - (F(Ho)L (max IH1bc. (6) 

In order to prove the existence of the thermodynamic limit following Griffiths 
(1964b, 1972) and Griffiths and Lebowitz (1968), we consider a system on a rectangle 
with sides of MP and NO lattice sites. We assume that MPNO lattice sites are 
composed of PO smaller rectangles, each with sides of M and N lattice sites. The 
Hamiltonian is denoted by H(MP,  NO) and we rewrite it as 

(1,) 

PO 

I =  1 
H(MP,  NO) = H / ( M ,  N )  +H' ( 7 )  

H' is the part of the Hamiltonian expressing the exchange interactions between the 
nearest-neighbour sites i and j in the original lattice where the site j belongs to a 
rectangle adjacent to the one to which the site i belongs. We introduce the notations 

f ( M P , N O )  = (F(H(MP,NQ))),/MPNQ (8) 

f(M, N )  = (FWiW, N)))cIMN 

and 

(9 )  

We note that equation (10) holds for arbitrary integers M, N, P and 0. When we choose 
K = 4( \J i , l ) c /~  for an arbitrary positive E ,  we have from equation (10) for arbitrary 
integers MI, N I ,  M2 and N2 greater than K: 

(11) 

Thus we prove that f (M,  N) approaches a limiting vaiue f as both M and N increase to 
infinity. It is obvious from equation (6) that the boundary conditions have negligible 

If(M1, NI) -fM, N2)I < E .  
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effects for a large rectangle because the correction terms become negligible as the 
surface-to-volume ratio approaches zero in the sense of van Hove (Ruelle 1969). 

From equation (4), we have 

WHO + X H l N C  s (F(H0))C + X((H1)o)c. (12) 
When we choose Ho as the exchange energy part and H1 as the external field part, we 
have 

YB (h  ) d TB( h = 0) - hmB( h = 0) (13) 
where 

Here the suffix B means a boundary condition imposed on the system. We shall 
consider the boundary condition Bo that the boundary spins are not coupled with an 
outer system and the one B1 that the boundary spins are forced to align upwards. 

Since the special boundary condition B1 results only in a surface contribution of the 
free energy, we have fBl(h) = fB,(h), and hence we have 

fBo(h)sfBo(h =O)-hmBl(h =o). (15) 
The spontaneous magnetisation is defined by 

If we have a positive number a for which mBl(h = 0) 3 a > 0, then we conclude that m, 
cannot be less than a since fBo(h) is a concave, symmetric function of h at any fixed 
temperature. 

We now show that the magnetisation mBl(h = 0) has a positive lower bound a at low 
temperatures. For h = 0, equation (1) is written as follows under the boundary 
condition B1 

where A is the set of sites j which are on the boundary of the lattice A. Here we restrict 
our system to the one that P(Jij) is p for Jij = J>O and 1 - p  for Jij = -J and $ s p  s 1. 
Following Griffiths (1964a, 1972), we draw lines bisecting pairs of sites i and j if si is +1 
on one site i and si is -1 on the other site j .  These form closed polygons each of which 
encloses at most (ab)' lattice sites if its perimeter is b. Thus the magnetisation is 
expressed as 

(18) m ~ , ( h  = 0) = 1 -2((N->>clIAl 

and 
v ( b )  

b=4.6,  ... j=l 
N - s  c xb" 

where Xy) is 1 if the jth border of length b occurs in a spin configuration and 0 
otherwise. Here N-  is the total number of sites with down spins in the system and v ( b )  is 
the number of different polygons of perimeter b in the system. Taking the thermal 
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average of equation (19) with Hamiltonian (17), we have 

v(b) 

b =4,6, ... j = l  
( N J S  1 ($b)2 (Xb"). 

The thermal average of X y )  is expressed as 

The sum in the denominator is taken over all the configurations of spin states satisfying 
the boundary condition, but the sum in the numerator only over all the configurations in 
which the jth border of length b appears. In order to find an upper bound of (Xb" >, we 
restrict the s u m  in the denominator to some special configurations. For the case in 
which the sum of J,, over the nearest-neighbour pairs of sites (ij) across the border is 
zero or negative, we consider only the spin configurations that appear in the numerator. 
Thus we have an upper bound 

(Xb")S 1 (22) 

when x(y)ESg(b)  .TI, 6 0 where B ( b )  is the set of nearest-neighbour pairs of sites (ij) which 
are situated across the border of length b. For the case in which the s u m  of Jl, is positive, 
we consider only the spin configurations which are generated from the spin configura- 
tions in the numerator by reversing all the spins inside their border. Thus we have an 
upper bound 

when X(ij)E4B(b) Jij > 0. 

and (23) and find an upper bound 
Now we take the configurational average of equation (21) by using equations (22) 

where A =exp(-2pJ). We shall use for v(b) the value estimated by Grfiths and 
Lebowitz (1968): 

v(b) 6 2]~i13~-~/b .  (25) 

This value is half of their value since we need polygons without direction. Equation (20) 
is now overestimated by 

1 1 
I 4  36 ,,=2 
- - ( ( N - ) ) c s -  f n9"((X:';>), 

The series in equation (27) converges at T = 0 in the range of p given by 0.97140 < p s 
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1. The condition that the right-hand side of equation (27) is equal to $ is obtained 
numerically and shown in figure 1 by the solid line bordering the hatched region in the 
p-T plane. We find 0.97394 for an upper bound of the critical concentration p c  above 
which the ferromagnetic phase occurs at T = 0. In the hatched region, we certainly have 
spontaneous magnetisation. In figure 1, the vertical broken line shows that there is no 
spontaneous long-range order to the left of the line 0.70710 down to 0.29289 and the 
horizontal broken line shows that there is no spontaneous long-range order above it 
(Horiguchi and Morita 1981). 

Q 
P 

Figure 1. The region hatched in the p-T plane where there certainly exists the spontaneous 
magnetisation and the region outside the broken line where the spontaneous magnetisation 
certainly does not exist. The dotted line is Nishimori's line. 

Thus in this Letter we could show that there certainly exists the critical concen- 
tration for the occurrence of the ferromagnetic phase in the random-bond Ising model 
with competing interactions *J. On the other hand, we have already shown that there is 
no spontaneous long-range order in a range of parameter p as also shown in figure 1. By 
combining both results, we have ultimately proved that the phase transition occurs in 
the system as a function of concentration p at sufficiently low temperatures. Our 
arguments are easily extended to other two- and three-dimensional lattices and also to 
the occurrence of the antiferromagnetic phase. 

An improved upper bound could be obtained if we used both of the configurations 
used in estimating (22) and (23) in the denominator of (21) and also if we used a better 
upper bound for v ( b )  obtained in the theory of self-avoiding walks (e.g. see Domb and 
Hioe 1970). 

We are grateful to Dr Y Fukui for discussions. 
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